If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+8x-19=0
a = 18; b = 8; c = -19;
Δ = b2-4ac
Δ = 82-4·18·(-19)
Δ = 1432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1432}=\sqrt{4*358}=\sqrt{4}*\sqrt{358}=2\sqrt{358}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{358}}{2*18}=\frac{-8-2\sqrt{358}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{358}}{2*18}=\frac{-8+2\sqrt{358}}{36} $
| 9y-54=36+4y | | 2/3+r=8 | | 42/50=x/375 | | -2n-4=34 | | (42/50)=(x/375) | | 15v+2.3=114.3 | | 8x+2-4x=5+2x+3 | | 15(10x−6x)+9(9−18x)=546 | | -1/2+3=x-7 | | -6(w+2)=4w-2+2(4w+1) | | 24n=3n=5.52 | | 12u=28 | | 4(y-6)+2y=-12 | | 63y-2.74=312.26 | | x+6x=21+15+5x | | h-(-3)=0 | | 140=7(4-4x) | | -4(-6y+4)-4y=5(y-3)-7 | | 2+7x^2-3x=0 | | 5x+x-5=5x+4 | | 11x-2(5x+4)=7 | | -3-3x=-4(2x+7 | | |x^2-9|=8x | | 3m+3=8m-8 | | 23+3y-9=14-4y | | x+3(3x+2)=6 | | 1+6n=-3+7n | | 13x-9=19-16-16+x | | -4(v-5)=-3(v-6) | | 2(2x+30)=-6(x+9) | | 2(x+5/3)=x+3 | | 2(2x+30=-6(X+9) |